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ABSTRACT 

a d  
The stability of flow down an inclined plane is investigated for the case of  a stratified 
fluid system consisting of  two layers of viscous fluids of different densities. This problem 
is  an extension of the works of Benjamin and Yih for a homogeneous fluid; thus their re- 
sults are a special case of the solution for this more general problem. Asymptotic cases 
for long and short wave length disturbances are considered, and the neutral curve i s  
estimated. Reynolds numbers for the bifurcation point of the neutral curve are found for 
various ratios of density and depth of  the two layers. For long waves, shear wave in- 
stability i s  also studied and is  found to be danped. For the purpose of comparing the 
Elative stability between different configurations, a stability index i s  defined. It i s  
found that the two-layer flow i s  more stable or unstable than the homogeneous case of 
equat total &ph, depending whether the upper fluid i s  lighter or heavier than the 
lower one. The source of instability i s  to be found in the presence of the interface. 

It i s  hoped that this work wil l  bear on problems of flow stabilizing techniques and liquid 
extraction processes. 
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1. INTRODUCTION 

The investigation of the stability of laminar flow of a homogeneous fluid down 

2 3 
an inclined plane has been undertaken by Kapitzol, Yih , and Benjamin and was re- 

4 
cently given a definitive treatment by Yih . Yih's results showed that for long waves 

(small d ), R = - cot 8 i s  the critical Reynolds number above which some disturbances 

wi l l  be amplified, and the line P( = 0 in the d -  R plane is  part of the neutral 

stability curve, and that very short waves are damped by surface tension. 

5 
6 

In this paper, the problem has been extended to flow of a heterogeneous system 

consisting of two layers of viscous fluid of different densities. The superposition of a 

lighter fluid on top of a heavier fluid introduces a fluid-fluid interface. The question 

then arises as to what effects the presence of the upper fluid and the interface have on 

the hydrodynamic stability of the system. These effects wi l l  be examined with respect 

to both surface disturbances and shear waves. 

This study i s  of interest to various problems of flows of two liquids that occur 

in  many industrial processes, such as liquid extraction. 

1 

2 
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2. THE BASIC FLOW 

In this section the basic unperturbed flow pattern i s  obtained. The basic flow 

is  assumed to be the steady flow of  two viscous, incompressible fluids at uniform depth 

down a plane inclined at an angle 8 with the horizontal, in a gravitational field. With 

the coordinate axes X-Y as shown in Fig. ia with origin at the interface, the unperturbed 

flow i s  parallel to the X-axis and the velocity i s  a function of  Y only. The upper layer 

i s  a fluid of density e and depth dl; and the lower layer i s  of density f" and depth 1 

The NavierStokes equations that govern the basic flow are 

- -  - -  
where u u are the components of velocity of the two fluids in the X-direction, p , p 1' 2 1 2 .  

are the pressures, and g i s  the gravitational acceleration and 

two fluids, considered equal. The pressure gradient in the X-direction i s  zero. Since the 

i s  the viscosity of  the 
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f low i s  parallel to the X-axis, the equation of continuity i s  automatically satisfied. 

Equations (1) to (4) can be integrated at once subject to the boundary conditions 

dti; 
dY = o ,  

The solution i s  

at Y = d , (zero shear at the free-surface), 1 

at Y = d (no slip at the solid boundary), 2 

at Y = 0, (no slip at the interface), 

1 at Y = 0, (equal shear at the interface). 

and 

If we now define the average velocity to be 
a 

and, after introducing the dimensionless parameters, 

- 3 -  



we have 

qa = ( f ? # ~ S A e & / p ) { L ~ ~ 8 / 2  

To simp1 ify writing, we shal I define the dimensionless factor 

- 
u can now be written as 
a 

- U, = p,js;led: /Kp-  (9) 

From this expression it i s  natural to define the Reynolds numbers and Froude number to be 

- 4 -  



With 

dimensionalized velocities U and Uz are then 

as the characteristic velocity and d as the characteristic length, the non- a 2 

1 

and 

where 

Equations (12) and (13) thus give the velocity distributions in completely normalized form. 

- 5  - 
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3. THE STABILITY PROBLEM 

The-stability prgblem is  now formulated following the usual una11 perturbation 

technique, and with the usual procedure o f  considering two-dimensional disturbances 

5 6 only, since Squire's result and later extensions by Yih have shown that the stability 

or instability of a three-dimensional disturbance can be determined from that of a two- 

dimensional disturbance at a higher Reynolds number. 

A. Eaimtlons zf Motion 

The Navier-Stokes equations are, 

where i = 1 denotes quantities associated wi th  the upper fluid, and i = 2 denotes quantities 

associated with the lower fluid, and u., v. are the velocity components in  the X, Y dir- 

ections, respectively, p. i s  the pressure, 1 i s  the time, and 

N l r l  

I I  

A, = a'/%' + a'/a'f', 
I 

The continuity equation i s  

The above equations are made dimensionless by setting 

5 H.B. Squire, Proc. Roy. SOC. (London) A145 621 (1933) 

6 C.-S. Yih, Quart. Appl. Math. 12, 434 (1955) 
- 

- 
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The non-dimensional forms are then: 

.. 

B. Perturbation Equations 

Assuming small perturbations from the basic flow in the form, 

- 
in which e = 

pressures and velocities, and, neglecting second order terms in  the primed quavtities, and 

making use of the fact that U., P. satisfy the bask flow equationsf we have, upon sub- 

stitution of (17) into (14), (15) and (16), the linearized equations governing the disturbance 

a2) , ui = zi /ca are the dimensionless basic flow 

I I  
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in which i = 1, or 2. From (20) i t  i s  seen at once that there exists a stream function qi, 
such that 

-4 - 3‘ = - 2% . 3% ““’9 2 

We now assume a sinusoidal disturbance and write 

and 

in which d i s  the dimensionless wave number defined by 2 A d, / A  , k being the 

- 8 -  
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wave length, and c = c + ic. i s  the dimensionless wave velocity. Substitution of (21) 

and (22) into (18) and (19) yields upon elimination of f.(y) by cross differentiation, the 

following two Orr-Sommerfeld equations for the two fluids, 

r I 

I 

in -6 5 1 5 0 

and 

, where the superscripts denote differentiation wi th  respect to y, 

in 

boundary conditions, two at the free-surface, two at the solid boundary and four at the 

interface. The boundary conditions at the interface form the coupling between *(a) and 

0 i 3 C I . The above two equations are now to be solved subject to eight 

b 

C. Boundary Conditions 

Before examining the boundary conditions, we need first to study the kinematic 

conditions at the interface and free-surface. Let the equation of  the free-surface be 

given by 3 = - s  t j ( x , t 3  

kinematic conditions are then 

, and the interface by 7 O. T C x , t )  . The linearized 

at the free-surface, 

- 9 -  



at the interface, 

considering 5 ,  and '1 to be of the xrme order as the other perturbation quantities. It 

then follows that 

where c, = c - u,(-a) , 
and 

where e, = c - UJO) . 

7 We now formulate the boundary conditions (details can be found in Kao ), bearing in mind 

that the free-surface conditions are to be applied at y = - d , and the interface 

conditions are to be applied at y =? . However, since 5 and are small, we need 

only take the leading terms, consistent with previous linearization, of the Taylor series 

expansions of quantities of interest and evaluate them at y = - 6 , or y = 0. 

+ 3 
z 

At the free surface the shear stress must vanish, and the normal stress must balance 

the normal stress induced by surface tension. Thus we have, 

~ 

7 T.W. Kao, "Stability of  Two-Layer Stratified Flow down an Inclined Plane," 
Tech. Rep. KH-R-9, W.M. Keck Laboratory of  Hydraulics and Water Resources, 
California Institute of Technology 

- 10 - 



= T, /i fl GIz) , T, being the surface tension. s, where 

To the first order these equations can be written as 

At the interface, the velocity components must be continuous; hence 

u, -- '1c2 2 v, = VL , 

which, since the basic flow velocity components are equal, yield, 

The shear must also be continuous at the interface; hence 

which to the first order is, after some ccz~cu~ations, 

(v) k ( 1  -U!I %(o) + C, Cp:(01 - C, +:(o) = o . 

- 11 - 



The difference of the normal stresses must be balanced by the normal stress induced by 

surface tension at the interface; hence 

where 

some calculations, to the first order, we have, 

5, = T2 /(f2 zd2) , T being the interfacial surface tension. Again, after 2 

+ id CK(1-Y) cat 8 t otZSIR,l (p,lo-l = 0. 

At the solid boundary, y = 1, we have u ' =  0, v ' =  0. Thus 

(viii) o . 

D. Eigenvalue Problem 

Equation (23) and (24) together with boundary conditions (i) to [viii) i s  the eigen- 

value problem we wish to solve with c as the eigenvalue. The general solutions of (23) 

and (24) w i l l  contain eight arbitrary constants. The substitution of these solutions into 

the eight homogeneous boundary conditions wi l l  yield eight homogeneous algebraic equations 

for the eight constants. The vanishing of the determinant of the coefficients w i l l  then 

give the secular equation of the form 

FloC,R,,%+ 6 ,  0 ,c>  = 0 > 

or 

- 12 - 
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from which the eigenvalue i s  determined wi th  c. > 0 representing growing disturbances, 

and c. < 0 representing damped dhturbances, and c. = 0 representing neutral oscilla- 

tions. Since this relationship i s  complex, i t  can be resolved into the reletionships 

I 

I I 

cr = c, w, K ,  Y, s, €0 > 

and 

C; ci ~ d ,  R ,  7, S, e )  

Setting c. = 0, we obtain Q relationship between oC(wave number) end R (Reynolds 

number) for given values of d (density ratio), $ (depth ratio) and 8 (slope angle). This 

relationship between &and R represents a curve in the -R plane, which is the curve 

of neutral stability. We note further that the special case Y = 1, 
c 2 

I 1 

1 1 

6 = 0, S = 0, cor- 

responds to a one-layered homogeneous system, which has been treated by Benjamin 3 

In subsequent calculations this limiting C Q S ~  w i l l  be calculated 4 and Yih 

and the results checked with those obtained by Benjamin and Yih. 

- 13 - 



4. SOLUTION OF THE EIGENVALUE PROBLEM 

Direct solution by series method i s  very lengthy. However, useful information 

can be obtained by examining suitable asymptotic limits. In pclrticdar we shall seek 

asymptotic solutions for two cases: (A). ease for long waves (mall d) ;  and (B). case 

for short waves (lasged ). It w i l l  be seen that most of the relevant information that we 

desire can be extracted from these two cases. 

A. Case for Long Waves (Small d ) 

The sfability of the system with respect to long waves wil l  be examined both 

wi th  respect to surface waves and shear waves. Yih% ' perturbation procedure, 

which leads to a study of surface waves, w i l l  be used. It i s  to be noted that this i s  Q 

"regular" perturbation procedure and does not introduce any difficulty usually encountered 

i n  the study of hydrodynamic stability problems for high Reynolds number where the asymptotic 

solutions are obtained by a %ingular" perturbation procedure. 

We introduce perturbation series of the form 

- 14 - 



(a) Zeroth Order Solution 1 

Substitution of (27), (a), and (29) into (23) and (24) and (i) to (viii) and col- 

lecting terms of order d" , yields 

(i) 

(i i) 

(i i i) 

(id 

(4 

(4 

(v i i) 

(viii) 

10 = co 
where c 

+:=a, 

- U,(- 6 ) and c = c -<U2 (01, i t  i s  to be noted that in this reduced zeroth 2 0 0  
order eigenvalue problem, the eigenvalue no longer appears in the differentid equation 

50 that no information can be obtained regarding shear waves. The shear waves wi l l  be 

examined separately in  a separate calculation below in subsection ( c ) ~  

15 - 
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The solution of this eigenvalue problem i s  straightforward. After some calculations, 

we find that the wave velocity, c is 
Of 

The corresponding eigenfunctions determined up to a multiplicative constant, 

which can be chosen to be unity without loss of generality, are 

and 
.* . 

We note that the quantity under the radical i s  positive definite for any value of 6 . This 

can be shown as follows: for 0 < s 5 1, this i s  obvious. For 

can be written as 

6 > 1, the quantity 

The expression in the square bracket attains a maximum at 

and equals 



.. 

which i s  always less than 1/4 for 6 > 1. This concludes the demonstration. 

It then follows that co i s  real for wave number d = 0, which means that the 

l ine OC= 0 in the d - R1 plane i s  part of the neutral curve whatever the value of 3' , 

b , 0, and R1. This is a very useful and welcome piece of information, for it shows 

that neutral oscillations can exist right down to Reynolds number R = 0. 1 

So far we have not yet discussed the sign in front of the radical for the eigen- 

value in equation (32). It appears that the plus and minus signs correspond to two dif- 

ferent modes of waves. If both of these eigenvalues were admissible for our calculation 

of the neutral curve, then there would be two neutral curves in the d -  R plane, one 

corresponding to each mode in contradiction to the general problem set forth in Sec- 

tion 3. One of the modes is  thus inadmissible for such calculation. 

1 

We observe that for the special case of homogeneous fluid ( y= 1, 8 = 0), 

2 
we recover the results of Benjamin and Yih, i.e., c = 3, 

when the positive sign i s  taken in front of the radical. Hence the positive sign is the 

4 +2; (1 - y) , only 0 

one that i s  to be used for subsequent calculations. 

The radio of the amplitudes of the free-surface and interface, r, i s  given by 

where 

- 17- 
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i .  

Therefore 

It is easily seen that r i s  positive definite for $4 1 and al l  8 ; since 

J(y!! +. a's++ 2TZ6'+ 3 7*g2 + vfs - ?$=> i s  positive definite as shown earlier, and 

%C I -b 2 3 6  - 256") + J ( ' / 4  - + 1 ' & 4 + ~ ' l ( ' S 3 +  33'bz -I- 1 6  - 3s ' )  

i s  never equal to zero. It may be of  interest to record here that when the negative sign 

i s  used in  front of the radical, calculations have shown that r would be negative, in- 

dicating an oscillation 180 out o f  phase. 
0 

f .., - 

(b) First Order Solution 

I 

1 The first order approximation i s  obtained by collecting terms of order &, which 

yields the following non-homogeneous differential system. The Orr-Sommerfeld equation 

now becomes, 

In these equations the right-hand sides, of course, are known. 

The boundary conditions are now 

- 18 - 
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It wi l l  now be noted that the left-hand side of  this system has the sqme form as 

the left-hand side of the zeroth order system as i t  should be from the theory of regular 

perturbation analysis. The general solutions *, and $, can again be determined at 

once by direct integration, and there wi l l  again appear eight arbitrary constants. Sub- 

stitution of *, and $ into the boundary conditions yields eight linear non-homogeneous 
L\ 

algebraic equations with the eight constants as unknowns. The determinant of the coeffi- 

cient i s  now known to be zero, since they are the same as the zeroth order calculation 

with c assuming the value determined previously. Thus A c can be calculated. 
0 

The calculations involved are very lengthy. (For details of  the calculation, see 

7 Kao. ) The final result i s  

- 19 - 



= E ( % )  ~ ~ ~ ( 6 ~ ~ ~ 6  -K-66a)k'11~o:,(-L)S,R, + ~ f ( 2 c , c z o Y ~  + 

+ kCr-3) (2~2, - KY&')) t Y Y s  CSa - C ( Krk(-6)/c10)StR~ t 

-t ( K(I-Y)/C&) 5 % ~ ~  J }  . 

Since G, 

that A c  i s  purely imaginary. Moreover, numerical computations indicate that G, 9, and 

, H, I ( ,  and A are al l  real for given values of and 5 , i t  then follows 

H are all positive. Thus A c  = ic., and c. will increase or decrease from zero when OC 
I I 

- 2 0 -  



increases from zero, according as 

s, > k E / d  cat8 > or R, L ( % / G I )  cote . (39) - 

Hence, the neutral stability curve has a bifurcation point on oC= 0, at R,= (S/G.)d8 - 
For the special case when = 1, 6 = 0, and S2 = 0, we have R = R2 = R, and 1 

recovering the result given by Yih 4 

The numerical results obtained for the two-layered system wi l l  be discussed in 

detail in Section 5 below. 

(c) Shear Waves 

In order to complete the stability study for long waves, we must next investigate 

the shear waves, which, as noted at the beginning of this section have been dropped out 

o f  the calculations. In order to include these waves, we must now assume that although 

d i s  small d c  i s  not small. The Orr-Sommerkld equations then become 

and the boundary conditions are now 

(i) +"C-s) = 0, 

> 

= 0, 

- 21 - 



.. 

(3 

(i v) 

(4 

(4 

+,(ol - +A01 - 0 , 
q c o >  - +! (0) = 0, 

Qt"(0, - #Yo) - 0, 
4('b) - f'm - (9) p *'co> = 0 > 

(4 +A) = 0 , 

(viii) CP:(I) = 0, 

where we have written /3* for - i d R  c. This again i s  a homogeneous differen 

system with c as the eigenvalue. The general solutions of (40) and (41) are 

1 ial 

Where A , A B , B C , C D , D are eight arbitrary constants. Substitution of 

(42) and (43) into the eight homogeneous boundary conditions (i) through (viii) once 

more yields a system of eight homogeneous linear algebraic equations to determine the 

eight arbitrary constants. In order to have non-trivial solutions, the determinant of the 

coefficients must vanish, which gives the secular equation to determine c. After some 

straightforward calculations, we obtain the following secular equation governing c: 

1 z 1 2 1 r 1 2  

- 22 - 



I .  

For the limiting case Y =  1, s = 0, equation (44) becomes 

w R g  = 0 > 

recovering the result for a one-layered homogeneous fluid.* Since c i s  in general 

complex i9 is complex. Separating into real and imaginary par ts  

from (44), that 

= b c ' p t  we have, 

The roots are then given by pr = 0, and pi satisfying 

There i s  a denumerably infinite number of real roots for (43, al l  non-zero. Thus p 
2 2 2 i s  purely imaginary. Hence. p is  always a negative number, say -M ,where M i s  

* Yih's result for this case contains a minor algebraic error. His conclusions, however, 
are unaffected by this error. 

- 23 - 



2 
positive. Hence, OLR (c + ici) = ip2, or ~ L R  c. = -M , showing the h p e d  nature of 

1 r  1 1  

the shear waves. 

It i s  now safe to conclude that the stability for long waves i s  indeed governed 

by surface waves. 

B. Case for Short Waves (Large O C )  

For any finite Reynolds number, and for o( very large, and provided c i s  small 

compared with d, (more precisely of order *-5, the asymptotic form of the Orr-Sommer- 

feld equations can be written as 

with the boundary conditions 

(i) +,'(-a) + (d'-  KYfc , )  4J-s> = 0 7 

- 24 - 



The above eigenvalue problem, w i th  c as the eigenvalue, i s  true even for the 

Reynolds number approach or equal to zero. Since as R 4 0, R 4 0 and I; ---c 0 for 1 2 a 
T -  

l/pua, and S R = 

are finite quantities even for R and R approaching zero or in the l im i t  equal 

finite p .  But pc= P,g&Od=/K i s  finite. Hence S 1 1  R = 2 2  
T -  

2/pu a 1 2 

to zero. 

The solutions for (46) and (47) are, 

and 

From he boundary conditions, we once more obtain a secular equation by s-tting the 

determinant of  the coefficients of Al, AT B,, By C1, Cy D1, D2 to zero. After m e  

straightforward substitution we obtain the following 8 x 8 determinantal equation: 

- 2 5 -  



The expansion of the determinant will then yield an algebraic equation to determine c. 

However, this process i s  very laborious, and since our interest i s  in the value of c when 

OC i s  large, we need only take a look at the roots of c as d 4 00 . The determinant, 

- 26 - 
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on expansion and taking the l imit as OC 4 4 , gives 

Hence as d -94 , 

or 

e - (Kh>(ItZTS) - ya/Ifs,R, . 
Now since S and S are positive for non-zero surface tension, therefore very short waves 1 2 

are damped by surface tension. On the other hand since S R and S R vary inversely 1 1  2 2  

as P I  viscosity reduces the rate of damping, a fact pointing to the dual role of vis- 

cosity noted by Yih , 4 

From the above discussion for the asymptotic solutions for long waves and short 

waves, the general trend of the neutral stability curve i s  determined. A typical sketch 

of a neutral stability curve i s  shown in Figure 2. Detailed calculations for part of the 

neutral curve for long waves are discussed in Section 6. 

- 27 - 
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5. THE RELATIVE STABILITY INDEX 

A meaningful question to ark with respect to the relative stability of the various 

flow configurations i s  this: For the same total depth, how does the stability of flow with 

stratification compare with the homogeneous case?* 

defining a relative stability index, s, as follows: 

We can answer this question by 

s = cr i t i ca l  depth for two-layer flow for a given 8 
cr i t i ca l  depth for homogeneous flow for same 8 

If s < 1, the two-layer flow i s  more unstable than the homogeneous flow. Indeed, i f  a 

flow o f  a homogeneous fluid of  depth h is  critical, then, when s < 1, the replacement of 

the homogeneous fluid by one with two layers of the same total depth wi l l  make the flow 

unstable. If s > 1, the situation i s  reversed. 

From the definition of the Reynolds number R the critical depth for two-layer 1' 

flow B given by 

and the critical depth for a homogeneous flow i s  

Therefore 

* The author owes to Professor C.4.  Yih of the University of  Michigan for posing this 
question in a private communication. 
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But since the total depth of the flow is  dZ(l + b ) ~ 

Rw ( I +  S) = 516 

Hence, it follows that 

% 
S - 0.737 C\+S) (K&/? f )  . 

A graph of s against s for various values of ?f i s  included and discussed in the next section. 

-29- 
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6. DISCUSSION OF GRAPHS 

From the algebraic results obtained in Section 4 for the long waves, numerical 

results are easily computed and presented in the form of graphs as shown in  Figures 3 

through 8. In t h i s  section we shall discuss these graphs. 

Figure 3 shows the variation of wave speed co with depth ratio b for different 

values of the density ratio for the limiting case of long waves. For small density 

differences ( 'b l r  I ), the wave speed remains essentially constant and equal to 3, the 

wave speed for the homogeneous one-layered flow. For larger and larger density dif- 

ferences (decreasing if ) the wave speed i s  reduced more and more; the greatest reduction 

occurring when the depth of the upper fluid i s  from one to two times larger than the depth 

of the lower fluid. As the depth of the upper fluid becomes much larger than the depth 

of the lowq fluid ( WI), the wave speed goes asymptotically to 3 as i s  to be expected 

since the disturbance i s  mainly associated with the free-surface. 

Figure 4 shows that for long waves the ratio of  the amplitvdes of  the free surface 

6 = d,/d2 increases, and i s  quite insensi- and interface, r, increases as the depth ratio 

tive to the ratio of densities. This i s  to be expected since the two surface oscillations 

are in  phase with each other and the mode represents mainly a free surface mode. 

Figure 5 gives the critical Reynolds number as a function of the depth ratio and 

density ratio based on computed bifurcation point of  the neutral curve on d = 0. It 

should be noted that critical Reynolds number s t i l l  exists for  the density of  the upper fluid 

greater than that of the lower fluid, so that the flow can s t i l l  be stable. This i s  due to the 

stabil izing effect of viscosity. 

-30- 



Figure 6 gives the plot of the relative stability index s against the ratio of 

depths for various values of the ratio of density. It can be noted that 8 = 1 gives a 

constant s = 1, as it should be, of course. This line marks the region of relative stability 

and instability. It i s  seen that if the density of the upper layer i s  smaller than that of the 

lower layer the effect of  stratification i s  to make the flow more stable. This confirms our 

intuitive idea of the stabilizing effect of stratification of this kind. On the other hand, 

i f  the upper layer i s  of higher density than the lower fluid, the flow i s  more unstable 

than the homogeneous fluid. The stability i s  now actually governed by the location of 

the interface and the ratio of the densities. The potential energy required to distort 

the interface becomes smaller and smaller as the ratio of densities become higher and 

higher and hence the flow becomes more and more unstable. Hence, the more the dif- 

ference in density, the more the stabilizing or destabilizing effect depending on whether 

P i s  less than or greater than p2. These arguments are borne out by the calculations 

and can be seen from the graphs in this figure. 

Figure 7 shows a typical plot of curves of constant c. for small wave number (long 
I 

waves) and small Reynolds numbers. They exhibit the expected behavior: c. increases 

for larger values of the wave number and Reynolds number. For long waves the stabilizing 

I 

influence o f  surface tension on the curves of constant growth rate i s  small, and does not 

affect these curves appreciabl y. 

Figure 8 shows the effect of surface tension on the neutral curve for small wave 

numbers and small Reynolds numbers. It i s  assumed for convenience that the surface ten- 

sion parameters S R and s,$* are equal. It can be seen that surface tension has a stabilizing 1 1  

effect for this range of 4 and R 

for any constant R 

and reduces the range of d for which instability occurs 1' 
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7. SUMMARY OF CONCLUSIONS 

The relevant results of this study wil l  now be summarized. 

(a) The axis d = 0 in the oC - R plane i s  part of  the neutral stability 

curve, showing that neutral oscillation can exist right down to R = 0. 

1 

1 

(b) There exists a bifurcation point of the neutral stability curve on OC = 0, 

which marks the critical Reynolds number above which there are unstable 

d i st u r ba nce s . 

(c) For a two-layer flow in which the density of the upper fluid i s  higher 

than that of the lower fluid, critical Reynolds number can s t i l l  be 

found. This i s  due to the stabilizing effect of viscosity. 

(d) Stratification can be stabilizing or destabilizing depending on whether 

the density of the upper layer i s  less than or greater than the density 

of the lower layer. The more the stabilizing or destabilizing effect, 

the more the difference in densities. 

(e) The source of instability lies in the introduction of the interface. 

(f) For long waves, the stabilizing influence of surface tension on curves 

of constant growth rate i s  small. 

(g) Surface tension has a stabilizing effect for long waves and small 

Re y no1 ds number. 
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